What Is the Best Compass Direction for Panels?

- Solar Tracking Systems
 - Automatically Follow the Sun.
 - 33% more Energy than Fixed Tilt
 - Generally Cheaper to install 33% more Fixed Tilt panels.
- Fixed Panels
 - South is Best

1

What Direction does your Roof Face?

Google Maps to the Rescue!

What Tilt Up from Horizontal should I Pick?

- If no Clouds:
 - Tilt up from Horizontal = Latitude
- But there are Clouds!!
 - Lots of Cloudy days: Face Panels more Upward
- Ability to Shed Snow is Somewhat Important in Alaska!
 - More than 60 65 degrees up from Horizontal to Shed most Snow
- Cost, Aesthetics, Wind

Grid-Tied Solar Output vs Orientation: Anchorage

Annual kWh per kW of Array (3% Shading Loss, 5% Snow Loss)

How important is Snow Cover on Panels? Anchorage Solar and Snow Data

% of Annual Energy produced by Month

% of Days with more than 3" of Snow Cover

Benefit of Adjusting Tilt Spring & Fall

- For Anchorage, a 33° Summer Tilt (early April August) and a 65° Winter Tilt maximizes Output.
 - Compared to a 65° Tilt year-round, you get **7.3% more** kilowatt-hours.
 - Compared to a 45° Tilt year-round, you only get
 2.4% more kilowatt-hours
 - Assuming you keep the 45° Tilt free of snow!

Off-Grid Tilt Optimization

Winter Months may be More Important

- Site Issues (Continued)
 - Shading
 - Solar Production Annually and Hourly in Anchorage
 - Shading Effects on PV Production
 - Tools for determining Shading
 - System Optimization for Shading Issues
 - Mounting Options
 - Roof Mount
 - Ground Mount
 - Pole Mount
 - (BIPV) Building Integrated PV
 - Tracker
 - Snow Build-up
 - Angle Needed To Shed Snow
 - Graph of Monthly Production and overlay typical snowfall for a couple Alaskan sites
 - Snow Covering bottom of Panel:
 - Superiority of Landscape Orientation
 - Standoffs to Elevate Panel
 - Means of Cleaning Snow

Annual Solar Production in Anchorage

Average Daily Solar Production in Anchorage

Shading Effects on Solar

Shading Effects on Solar

Soft Shade: A reduction in irradiance, usually caused by upper layer clouds

Hard Shade: A visible shadow or shade cast on an array by object

Tools for Determining Shading

Solar Path Finder

Solarmetric SunEye

System Optimization Due to Shading Issues

- Remove any Trees or Objects that will cause consistent shading
- Utilize Micro Inverters or DC Optimizers rather than a string inverter
- Wire panels in strings least effected by shading (Usually Horizontally)
- NEVER put panels on the same string facing different directions.

Mounting Options

Top of Pole Mount

Roof Mount

Ground Mount

Dual Axis Solar Tracker

Mounting Options – Roof Mount

- Great for locations with roof space
- Low Cost
- Low Footprint
- Rated for high winds
- Not easily adjustable
- Very inaccessible for snow or maintenance
- Can cause vibration in High winds

Mounting Options – Ground Mount

- Great for locations with a lot of land
- Easy Snow Removal
- Rated for high winds
- No vibration on residence
- Scalable for Large Arrays
- Large Footprint
- Can block view
- Requires trenching
- Expensive for small systems

Mounting Options – Pole Mount

- Great for locations with a lot of land
- Adjustable for seasonal optimization
- Can have almost no snow cover
- Rated for high winds
- No vibration on residence
- Large Footprint
- Can block view
- Requires trenching
- More expensive than roof mount

UAF Sustainable Village – If we do not count the street lights installed for the Village, this solar install, direct to GVEA's grid, offsets 100% of the four homes electrical usage.

Mounting Options – Building Integrated PV (BIPV)

- Reduces Construction Cost
- Visually More Appealing
- Can have almost no snow cover
- Rated for high winds
- Usually has to be planned in the design phase
- Hard to replace panels if there are any issues
- Angle is fixed so your production is reduced

Mounting Options - Solar Tracker

- Most Efficient Mounting
- Doesn't have to be adjusted
- Can have almost no snow cover
- Rated for high winds
- Tends to have the most maintenance
- Because it is moving there are failures occasionally
- It is extremely expensive
- Large Footprint
- Have to Trench

Snow Buildup

100% Covered equals 0% Producing

Snow Buildup – Angle Needed

24.6 Degrees

30 Degrees

41.8 Degrees

45 Degrees

65 Degrees

It's really all about dry snow vs. wet snow!!

Snow Buildup – Snow vs Production Months

- Percent of Annual Days of Snow Fall
- Percent of Annual Solar Production

Snow Buildup – Shading from Snow

Landscape

*String vs Parallel Connection

Snow Buildup - Means of Cleaning Snow

- Panels are fairly durable. So a plastic shovel with no metal in it can often be used to clear panels for a roof mount.
- Trackers and Pole Mounts usually only require a good shake for them to slide off
- Vertical Panels rarely accumulate snow, and if so it is not on there very long
- Lower residential roofs sometimes use extension squeegees to clear their panels.