Retrofit – the future depends on it

Alaska Center for Appropriate Technology Annual Meeting November 22, 2024

Tobias Schwoerer • Research Assistant Professor

International Arctic Research Center on the UAF Troth Yeddha' Campus

Arctic Research Center

House characteristics

- Built: 19
 - 1978
- Location: near Campbell Tract
- Living space: 1,351 sqft, Garage: 257 sqft
- S-facing windows: 0
- Window / wall: 10%
- Energy Rating: 4 Star + (84.1 points)
- Air leakage: 79 sqin (1,562 CFM @ 50Pa)
- Heat: Natural gas boiler, baseboard heat, no ducting
- Electricity: 8.4kW solar array (>½ energy for home and vehicle)

AIR SEALING & VENTILATION

 ✓ Taped vapor-open air-barrier outside of old T1-11 siding

✓ Decentralized heat recovery ventilation system

INSULATION

HEATING

✓ Cathedral Roof: >7" polyurethane with 1.5" gap
 ✓ Walls: + R 24 of vapor-open insulation

towards net zero

WINDOWS & DOORS

✓ Triple pane for opening windows, U=0.16
✓ R14 insulating glass units, U=0.058
✓ Codel 100% fiberglass doors, triple lock

✓ 3 tons soapstone masonry heater
 ✓ ~3 cords firewood/year

Cathedral ceiling roof

7" polyurethane

> 1.5" air gap

2 years later

Air sealing

top plate

Cut siding, get close to air barrier in ceiling (VB + polyurethane)

TESCON® PRIMER

Permeability:38 permsWaterproofness:33ft columnAirtightness:0.00004 cfm/sqftLayers:3 (less prone to tearing)

Permeability:54 permsWaterproofness:1ft columnAirtightness:0.004 cfm/sqftLayers:1

Air sealing

soffit vents

top plates

Step 1 Liquid air barrier sprayed with compressor around soffit vents 12V wire for heat recovery fans

Air barrier

1. del mag Antonia antoni

and tape

Step 3

Insulation

frost protection below grade

2 stacked layers of 3" EPS foam

2ft

Air barrier glued and sealed below sheathing

> <u>**Tip:**</u> screw 2x4 here to later be able to attach furring strips and sheet metal (on grade)

Insulation

moving wall penetrations

Electric service upgrade

- 200 Amp
- wiring to 8.4kW solar array

REMOTE Walls

One of the greatest challenges of building in a cold climate is managing moisture in the building envelope. That's because of a familiar concept called vapor drive, in which water seeks to go from a more concentrated state to a less concentrated state. What does this mean for your building?

REMOTE WALL

Smart Enclosure System

diffusion / vapor open

minimizes thermal bridging

Wood fiber insulation:

- 32 perms
- sequestered carbon
- ~100% recycled wood fiber, paraffin (wax)
- NO health concerns
- Use saw to cut

Rockwool Comfortboard (2x4ft):

- 30 perms
- Formaldehyde
- Energy intensive to produce
- Not a recycled product
- Use breadknife to cut

VS.

Window RO moved out by thickness of 1st layer of insulation

Cut EPS 6" lower than shown to allow for D1 and pavement to garage entry

Keep track of wall layout for screws later attaching furring strips

0 R12

2 stacked layers of 3" Rockwool Comfortboard, adding R24

-

Serie 1

Increased size of attic vent

Vertically aligned furring strips allow airflow behind siding

Windows

- Strap anchors instead of nail fins
- No foam!
- Rockwool & taped
- 2nd layer of insulation <u>overlaps</u> window-RO-gap by 1 inch

Window-RO-gap increases critical insulation zone with conventional windows

Conventional window

- The very warm interior surface of the glass unit is almost a uniform 18° C, as indicated by the red shading
- The exterior surface of the glass unit is an extremely cold -18° C (same as outside temperature)
- LiteZone[™] achieves very high overall window R-values because of its large "insulation zone"

Insulated Glass Unit

Simulated Infrared Image of LiteZone™ film layered glass unit and frame

Decentralized heat recovery ventilation

- 12V
- working in pairs
- one controller

Easy penetrations – easy maintenance

- Passive heat exchange
- Whisper noise (18 decibels)
- MERV 13 filter (wildfire)
- 89% efficient
- 10, 15, or 20 ft²/min

Source: 475.supply

Heating

- Foundation in cellar
- Concrete pedestal
- Slab with exterior air intake
- Electricity hook up

Natural gas consumption ^{house temp} = 70° F

Material costs

Description	Cost	% of total
Insulation	\$15k	28%
Windows and doors	\$15k	28%
New siding	\$12k	22%
Heat recovery ventilation	\$9k	17%
Air sealing	\$3k	6%

Add ~50% miscellaneous materials: total ~\$80k Not included: labor, masonry heater, 200Amp electrical upgrade

Acknowledgments

- Mark Houston, The Comforts of Home
- Floris Keverling, 475 High Perf. Building Supply
- Ilya Benesch, Cold Climate Housing Research Center
- Erik Hjelm and Andy Hoyt, Hjelm Construction
- Andy Buhler, Buhler Construction
- Seth Downs and Trond Flagstad
- Jamie and Isaac Paiken, Alaska Masonry Heat
- Tory Dugan

Thank you

EMAIL ADDRESS

tschwoerer@alaska.edu

International Arctic Research Center