Happy Homes Matt Oster Red Edge Design matt@rededgealaska.com



## Objectives

- How do we Talk About What We Build or Live In
- Where is NZE Compared to what we Build Today
- Intro into Passive House as a Metric and Model
- Retro-fitting Existing Structures
- Wall Assemblies and Details for New Construction
- Air Tightness and Ventilation
- Heating and Over Heating



# Happy Homes?

What is this all about?

# How do we describe:

- ~ Durable 20,50,100,200 years
- ~ Energy Efficient, metric?
- ~ Site Appropriate and Orientation
- ~ Moisture Management
- ~ No Pollution, Healthy Indoor Air
- ~ Highly Comfortable
- ~ Environmental Impact
- ~ Repairable
- ~ Affordable, over how long?

- Energy Star 5star+, 6star
- Super Insulated Home
- DEC Building America
- Passive House
- ✤ IEEC 2009
- A Builder's Reputation
- Net Zero Energy
- Living Building Challenge
- Natural Building
- Passive Solar Home

# It's not just About Energy Efficiency!

We need to look at the human, environmental, aesthetic, durability, pollution, etc. issues as well as the monetary paybacks to describe what we want to live in.

# What Are We Building?



# Think and Listen.

What are words or descriptors we can use to encapsulate all of these characteristics of a home, besides Happy<sup>©</sup>!

# Path to NZE

What Are our options? We have a couple:

1 – Add a crap ton of Renewables to existing stock
 2 – Build or Retro-fit our building shells to fit small Renewable systems

3 – Move to Iceland and build what ever you want

## My 6star home NZE



#### Orders of Magnitude



## Passive House as a Metric







## PH Criteria

#### **Energy Metrics**

(discounted interior conditioned floor area - TFA)

Annual Heating Energy Demand  $\leq$ 4.75 kBTU/ft<sup>2</sup> yr or 1.4 kWh/ft<sup>2</sup> yr [15 kWh/m<sup>2</sup>a]  $\leq$ 4.75 kBTU/ft<sup>2</sup> yr or 1.4 kWh/ft<sup>2</sup> yr [15 kWh/m<sup>2</sup>a] Annual Cooling Energy Demand -OR- $\leq$ 3.17 BTU/hr.ft<sup>2</sup> or approx. 1 W/ft<sup>2</sup> [ 10 W/m<sup>2</sup> ] Peak Heating Load ≤2.54 BTU/hr.ft<sup>2</sup> or approx. 0.75 W/ft<sup>2</sup> [ 8 W/m<sup>2</sup> ] Peak Cooling Load -AND- $\leq 38 \text{ kBTU/ft}^2 \text{ yr or } 11.1 \text{ kWh/ft}^2 [ 120 \text{ kWh/m}^2 a ]$ Annual Total Primary Energy Demand

Air Leakage @ 50 Pa

≤0.6 ACH<sub>E0</sub>

#### Guidelines for PH

| Heat Load<br>Cooling L                                                                                                                                 | d:<br>oad:                                                                                             |                                                                                                             | ≤10 W/m²<br>≤ 8 W/m²                                                                                                                                                        | ≤ 1 W/ft²<br>≤ 0.8 W/ft²                                                                                                                                                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Envelope                                                                                                                                               | Insulation:<br>Very Cold/humid<br>Cold<br>Mixed/humid<br>Mixed/dry<br>Marine<br>Hot/humid<br>Hot/humid | Minneapolis, MN<br>Chicago, IL<br>Ashville, NC<br>Las Vegas, NV<br>Seattle, WA<br>Houston, TX<br>Phoenix A7 | U≤0.08 W/m <sup>2</sup> K<br>U≤0.094 W/m <sup>2</sup> K<br>U≤0.16 W/m <sup>2</sup> K<br>U≤0.14 W/m <sup>2</sup> K<br>U≤0.13 W/m <sup>2</sup> K<br>U≤0.16 W/m <sup>2</sup> K | R≥71 hr-ft <sup>2-°</sup> F/Btu<br>R≥60 hr-ft <sup>2-°</sup> F/Btu<br>R≥35 hr-ft <sup>2-°</sup> F/Btu<br>R≥40 hr-ft <sup>2-°</sup> F/Btu<br>R≥44 hr-ft <sup>2-°</sup> F/Btu<br>R≥35 hr-ft <sup>2-°</sup> F/Btu<br>R>35 hr-ft <sup>2-°</sup> F/Btu |  |
| Thermal I<br>Linear Th                                                                                                                                 | Bridge Free Construction<br>ermal Transmittance                                                        | on:                                                                                                         | Ψ≤0.01 W/mK                                                                                                                                                                 | Ψ≤0.006 Btu/hr-ft-° F                                                                                                                                                                                                                             |  |
| High Performance Windows<br>Overall Thermal Transmittance (Very Cold)<br>Solar Heat Gain Coefficient (Mixed/Cold)<br>Solar Heat Gain Coefficient (Hot) |                                                                                                        |                                                                                                             | U≤0.6 W/m²K<br>g-value≥50%<br>g-value ≤ 30%                                                                                                                                 | <i>U</i> ≤0.11 Btu/hr-ft²-°F<br>SHGC≥50%<br>SHGC ≤ 30%                                                                                                                                                                                            |  |
| Heat Rec<br>Net E                                                                                                                                      | overy Ventilation<br>Efficiency                                                                        |                                                                                                             | <mark>h</mark> ≥75%                                                                                                                                                         | h≥75%                                                                                                                                                                                                                                             |  |

#### Thermal Bridge Free Building





Max ΔT interior air vs interior surface temp: Minimum Ventilation Air Temp (winter) Max Temperature of Heating Coil

24 hr DHW Design Flow Assumptions



≤7.2°F (≤4°C) ≥62°F 125.6°F

6.6 gal/person @140°F

#### Feels chilly and drafty: uncomfortable!

Conventional Code House – Typ. 2x4 wall (actual R 10) Double glazed window – R 3

Outside Temperature 0º F



Factors affecting Comfort:

- Air Temperature (dry bulb º F)
- Relative Humidity (%)
- •Air Velocity (ft/min)
- Radiant Conditions (MRT º F or radiation value BTUh/ft<sup>2</sup>)



#### Feels: comfortable! Temperate glass and wall surfaces and no drafts

Passive House R 60 Triple glazed Window R -9 (Climate specific)

Outside Temperature 0º F



PH Comfort criteria

- Air Temperature (68 º F)
- Relative Humidity (40-60 % for PH)
- •Air Velocity (<19.7 ft/min)
- Radiant Conditions
   (Difference between air temperature and coldest surface 68 -RT <7.2 ° F )</li>



Note: Costs are for central Europe (Germany)

(Source: IEA Information Paper: Energy Efficiency requirements in Building Codes, Author Jens Laustsen)

# Modeling

| Dublin example.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Charts SmartArt Formulas Data Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| pert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
| Passive House Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |
| Pratur Drawig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |
| Partial reserve Names         1357 # 2643         1357 # 2643         1156 # Sace Stream = Bailer 302         1157 # Sace Stream = Bailer 302         1158 # Sace Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Color Legend<br>1787-162*-142*-112*-97*-97*-62*-40* c<br>THERMAL BRIDGE! |
| Anne Basel                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |
| AR ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGANY<br>ARTINGAN | Results                                                                  |

## Retro-Fits

The elephant in the room for energy savings My Experience, and where I see potential.

## Our Retro-Fit



#### 83.3 % reduction in heat load

#### **AkWarm Heating Energy Flows Report**

| Client:  | Saskia Esslinger    |  |  |  |
|----------|---------------------|--|--|--|
| Home at: | 3842 Williams St.   |  |  |  |
|          | Anchorage, AK 99508 |  |  |  |

Energy Flows below are in Btu/hour

| Month | Hours | Gross<br>Loss | Gross<br>Internal | Useable<br>Internal | Gross<br>Solar | Useable<br>Solar | Natural<br>Infil cfm |
|-------|-------|---------------|-------------------|---------------------|----------------|------------------|----------------------|
| Jan   | 744   | 38,402        | 7,350             | 7,350               | 803            | 794              | 162                  |
| Feb   | 678   | 34,803        | 7,175             | 7,175               | 1,923          | 1,916            | 159                  |
| Mar   | 744   | 30,431        | 6,937             | 6,937               | 3,761          | 3,673            | 151                  |
| Apr   | 720   | 21,935        | 6,699             | 6,699               | 4,171          | 3,942            | 138                  |
| May   | 744   | 14,446        | 6,524             | 6,524               | 3,879          | 3,399            | 131                  |
| Jun   | 720   | 9,121         | 6,460             | 6,052               | 4,119          | 2,517            | 118                  |
| Jul   | 744   | 6,660         | 6,524             | 5,282               | 3,844          | 1,375            | 102                  |
| Aug   | 744   | 7,804         | 6,699             | 5,809               | 3,263          | 1,766            | 102                  |
| Sep   | 720   | 12,870        | 6,937             | 6,892               | 2,645          | 2,359            | 114                  |
| Oct   | 744   | 22,398        | 7,175             | 7,175               | 1,863          | 1,854            | 136                  |
| Nov   | 720   | 31,795        | 7,350             | 7,350               | 1,069          | 1,060            | 151                  |
| Dec   | 744   | 37,731        | 7,413             | 7,413               | 491            | 485              | 160                  |

#### Annual Energy Flows

Gross Loss: 195.6 MMBtu

Gross Internal: 60.8 MMBtu Useable Internal: 58.9 MMBtu Internal Utilization: 0.969

Gross Solar: 23.3 MMBtu Useable Solar: 18.3 MMBtu Solar Utilization: 0.788

Net Heat Load: 118.3 MMBtu

#### Design Heat Load

| Main Home: | 57,336   | Btu/hour |
|------------|----------|----------|
| Garage:    | <u>0</u> | Btu/hour |
| Total:     | 57,336   | Btu/hour |

The above value is the required amount of heat to be supplied by the furnace/boiler. If the space heating system also heats domestic hot water, you need to add an allowance for this, typically 1,500 Btu/hour per person. If you need to determine the required Input Rating of the heating system, you must increase the output figure above to account for the inefficiency of the furnace/boiler and add a sizing safety margin.

AkWarmCalc ver. 2.3.1.0, Energy Library ver. 9/24/2013

#### **AkWarm Heating Energy Flows Report**

| Client:  | Saskia Esslinger    |  |  |
|----------|---------------------|--|--|
| Home at: | 3842 Williams St.   |  |  |
|          | Anchorage, AK 99508 |  |  |

#### Energy Flows below are in Btu/hour

| Month | Hours | Gross<br>Loss | Gross<br>Internal | Useable<br>Internal | Gross<br>Solar | Useable<br>Solar | Natural<br>Infil cfm |
|-------|-------|---------------|-------------------|---------------------|----------------|------------------|----------------------|
| Jan   | 744   | 13,617        | 5,639             | 5,639               | 715            | 712              | 83                   |
| Feb   | 678   | 12,294        | 5,464             | 5,464               | 1,700          | 1,676            | 81                   |
| Mar   | 744   | 10,676        | 5,226             | 5,224               | 3,304          | 2,765            | 78                   |
| Apr   | 720   | 7,756         | 4,987             | 4,804               | 3,638          | 2,330            | 71                   |
| May   | 744   | 5,195         | 4,813             | 4,017               | 3,361          | 1,178            | 67                   |
| Jun   | 720   | 3,377         | 4,749             | 3,019               | 3,557          | 358              | 61                   |
| Jul   | 744   | 2,559         | 4,813             | 2,416               | 3,324          | 143              | 52                   |
| Aug   | 744   | 2,985         | 4,987             | 2,766               | 2,838          | 219              | 52                   |
| Sep   | 720   | 4,775         | 5,226             | 3,959               | 2,322          | 789              | 58                   |
| Oct   | 744   | 7,955         | 5,464             | 5,168               | 1,644          | 1,514            | 70                   |
| Nov   | 720   | 11,165        | 5,639             | 5,630               | 949            | 948              | 77                   |
| Dec   | 744   | 13,359        | 5,702             | 5,702               | 438            | 435              | 82                   |

#### Annual Energy Flows

Gross Loss: 69.7 MMBtu

Gross Internal: 45.8 MMBtu Useable Internal: 39.3 MMBtu Internal Utilization: 0.857

Gross Solar: 20.3 MMBtu Useable Solar: 9.5 MMBtu Solar Utilization: 0.468

Net Heat Load: 21.0 MMBtu

#### Design Heat Load

| Main Home: | 21,062   | Btu/hour |
|------------|----------|----------|
| Garage:    | <u>0</u> | Btu/hour |
| Total:     | 21,062   | Btu/hour |

The above value is the required amount of heat to be supplied by the furnace/boiler. If the space heating system also heats domestic hot water, you need to add an allowance for this, typically 1,500 Btu/hour per person. If you need to determine the required Input Rating of the heating system, you must increase the output figure above to account for the inefficiency of the furnace/boiler and add a sizing safety margin.

AkWarmCalc ver. 2.3.1.0, Energy Library ver. 9/24/2013

## Air Tight Layer



## Reduce North Window Area



## Buck Windows, add Foam



## Create Rain Screan



#### Insulate Foundation and Slab



# Abundant!

100

# Chain Saw Example



Although a wonderful retrofit, we would have done things a bit differently now.

- Air boundary in Attic and Roof Heel
- Window Detailing
- EPS insulation
- Bituthane air tight layer
- Window Area
- Door Quality and Placement
- Eves and Attic Ventilation
- Ventilation Ducts, and how heat is Expelled from House

#### What Went Right!

- Dramatic Energy Savings
- Noise Reduction
- Total Comfort
- Aesthetics
- NeighborhoodImprovements
- Durability Increased
- Moisture Management
- Pollution Management

#### Retro-Fit Strategy

In the future, I would use an open diffusion wall retro-fit with blown cellulose.

This allows moisture to come, go, or be absorbed as needed.

It also has a much lower embodied energy, and supports local manufacturing.



#### This Could be Difficult



## New Construction

Some possible Details

#### Double Stud Wall











CROSS-SECTION 2VE REMOTE WALL WITH 6 INCHES OF EXTERIOR FOAM



#### REMOTE Wall Details





# SIPS



#### Foundation Detail



#### Floor Detail





DETAIL: FLOOR FRAMING CONNECTION SCALE: 1\*- 110

#### Roof Detail



DETAIL: TOP CORNER AND ROOF

SCALE: 1"= 1'0

## Window Detail





#### Box beam outside wall, rear ventilation/ wooden window

#### Bauphysik / Building physics

|                                                                                                                                                                      | Einheit / Unit                          |                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|
| Linearer Wärmebrückenkoeffizient $\Psi$ •<br>Linear thermal bridge coefficient $\Psi$                                                                                | W/mK                                    |                                 |
| Sturz/Laibung + Header/reveal                                                                                                                                        |                                         | 0,007                           |
| Parapet ohne Überdämmung • Parapet w/o add. insulation                                                                                                               |                                         | 0,021                           |
| Parapet, 2 cm überdämmt • Parapet, 2 cm add. insulation                                                                                                              |                                         | 0,015                           |
| Parapet, 2 cm überdämmt, Doppel-T-Träger an durchgehender<br>Spanplatte • Parapet, 2 cm add. insulation, double T-beams in<br>contract with the continuous chickford |                                         | 0.010                           |
| Win war 7 cm überdämmt - Ar alkeun 7 cm add leculation                                                                                                               |                                         | 0,019                           |
| Wie vor, statt Doppel-T-Träger 6 cm Konstruktionsvollholz *                                                                                                          |                                         | 0,012                           |
| As above, instead of double T beams 6 cm solid construction wo                                                                                                       | od                                      | 0,016                           |
|                                                                                                                                                                      | A & & & & & & & & & & & & & & & & & & & | the second second second second |

## Air Sealing



## Products for Airsealing



#### Majpell 5

Vapour control layer for roof renovations from the outside, above-rafter and between-rafter insulation for roof, wall and ceiling structures

to detail page



#### Twinet

Double-sided high-performance adhesive tape for the pre-installation of membranes on hard substrates such as wood and metal

to detail page



#### Sicrall 60

Yellow, single-sided high-performance adhesive tape for overlaps of vapour control layers

to detail page



#### Rissan 60

Green, single-sided high-performance adhesive tape for circular penetrations in the interior

to detail page



#### Primur Roll

High-performance adhesive compound on the roll for bonding the vapour control layer to various substrates

to detail page



#### Primur tubular bag and cartridge

High-performance adhesive compound in tubular bag or cartridge for bonding to plastered masonry and massive structures

Pre-folded single-sided high-performance

adhesive tape for window and door frames

to detail page

to detail page



#### Corvum 30/30

Pre-folded single-sided high-performance adhesive tape for purlins, corners, skyliahts and ioists

to detail page



#### Rissan 100 and 150

Green, single-sided, slit high-performance adhesive tape for bonding wall elements to floor and ceiling

to detail page



#### Dockskin

Corvum 12/48

High-performance primer for strengthening sandy, fibrous substrates, such as woodfibre boards, wood-based panel materials, gypsum fibre boards, plaster and stone

to detail page



#### Sicrall 170

Yellow, single-sided high-performance adhesive tape for injection holes and leakages

to detail page

# ACH < .6 @ 50Pa

#### The RecoupAerator® is the ONLY air filtration/ventilation system with All of these features:

- · Self-balancing Air flow between the fresh air intake and stale air exhaust are automatically balanced
- EconoCool<sup>™</sup> Brings in cool filtered air in the summer A/C required less often
- Brushless Motor Technology EC Motors Perform quietly and efficiently
- MERV 12 Filtration Filters particles as small as 1.8 microns
- Filter Alert Automatically signals you when it's time for filter service
- Adjustable Fan Speed Range of air flow to perfectly match fresh air requirements (30-200CFM)

Intertek

#### Primary Benefits of the RecoupAerator®

- Delivers continuous, fresh, healthy air
- Saves money on ventilation by recovering 96% of building heat energy
- Automatically balances air flow and pressure
- Reduces cold air drafts by balancing building pressure
- Maintains consistent indoor humidity
- Lowest Cost-of-Ownership
- Exhausts pollutants to improve Indoor Air Quality
- Reduced wear and tear on HVAC system – extends service life
- Reduced usage of A/C system saving energy
- Easiest whole-house ERV to install and maintain





### Passive House Approved

| Certified Passive Hou<br>For cool, temperate climate | Ise Component<br>s, valid until 31 December 2013                                                                                                                                                                                                 | Passive H<br>Dr. Wolfga<br>64283 Dar<br>GERMAN |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|
| Category: Heat                                       | recovery unit                                                                                                                                                                                                                                    |                                                |  |
| Manufacturer: Zehn<br>8028                           | Zehnder Group Nederland B.V.<br>8028 PM Zwolle, NETHERLANDS                                                                                                                                                                                      |                                                |  |
| Product name: Com                                    | oAir 350, ComfoD350, WHR930<br>warded based on the following                                                                                                                                                                                     | Certi<br>flow<br>71 –                          |  |
| Thermal comfort                                      | θ <sub>supply air</sub> ≥ 16.5 °C<br>at θ <sub>autore o</sub> t = -10. °C                                                                                                                                                                        |                                                |  |
| Effective heat recovery rate                         | $\eta_{\rm HR,eff} \ge 75 \%$                                                                                                                                                                                                                    | -                                              |  |
| Electric power consumption                           | P <sub>el</sub> ≤ 0.45 Wh/m³                                                                                                                                                                                                                     |                                                |  |
| Airtightness                                         | Interior and exterior air leakage rates<br>less than 3 % of nominal air flow rate                                                                                                                                                                |                                                |  |
| Balancing and adjustability                          | Air flow balancing possible: yes<br>Automated air flow balancing: no                                                                                                                                                                             | Elect                                          |  |
| Sound insulation                                     | Sound pressure level $L_p \le 35 \text{ dB}(A)$<br>based on a 4 m <sup>2</sup> equivalent<br>absorption area not met<br>Here $L_p = 54.1 \text{ dB}(A)$<br>Unit should be installed so that it is<br>acoustically separated from living<br>areas | con:<br>0.2                                    |  |
| Indoor air quality                                   | Outdoor air filter F7<br>Extract air filter G4                                                                                                                                                                                                   |                                                |  |
| Frostprotection                                      | Frost protection for the heat exchanger with continuous fresh air supply down to $\theta_{outdoor air} = -15 \ \mbox{°C}$                                                                                                                        | Ÿ                                              |  |

assive House Institute or. Wolfgang Feist 4283 Darmstadt GERMANY

TPHI

#### Certified for air flow rates of 71 – 293 m³/h Лнк,ен 84% Electric power consumption

0.29 Wh/m<sup>3</sup>



#### Pre-heating Fresh Air

PRE HEAT INSTALLATION CONNECT TO DUCT 1



#### Undercuts and Bypasses



PH delivered ventilation exceeds ASHRAE 62.2, because PH sizes ventilation systems to meet loads, not assuming a leaky envelope will provide any fresh air

## Coanda Effect and Efficient Duct Layout





#### Educate and Maintain

Provide simple, understandable and obvious maintenance features

Educate end-user or facilities staff on maintenance needs, process and schedule

Automatic maintenance reminders can be very effective





#### Passive House Approach:

#### Size the Shell to the Heating System



## Order of Mechanical Design

**Optimize Orientation** 

Super-insulate, Air Seal + HRV/ERV

Optimize Window Performance (U Value, SHGC)

1<sup>st</sup> Utilize Passive Space Conditioning Strategies

2<sup>nd</sup> Utilize High Efficiency Active Strategies

Then...Zero Out with Onsite Renewables

#### Advantages

- Smaller Heating & Cooling Demand
- Smaller Peak Loads: Solar & Heat Pumps Have Low Peak Output
- Passive House Is "Sluggish":Heating & Cooling "Averaged" over 24 HR Period

## Challenges

- Small Energy Budget (38 kBTU/ft<sup>2</sup> | 11 kWh/ft<sup>2</sup>yr)
- Sourcing Appropriate Equipment in N America

## Heating through Ventilation

#### WATER AIR

#### Hydronic Duct Coil: Heating with DHW



Feed with Solar ThermalFeed with High Eff Boiler



#### Electric Heat inline with HRV

Electric Duct Heater: (Source Energy Concern) Backup for Solar?



#### Point Source Heat



Through-the-wall sealed combustion furnace

## Sweet Spot



# DHW will likely be the largest energy draw in a PH

## DHW considerations



## Boilers as DHW Heaters

#### Sealed Combustion

**Modulating Burners** 

Low Water Content

Condensing

Low Temp Operation



## Solar Hot Water



#### Solar with E-back up



#### Review

Goal is towards NZE, to increase healthy living spaces, comfort, durability, reduce energy use, minimize costs, reduce environmental impact, and to enjoy.

- ✤ Thermal Shell >R-60
- Thermal Bridge Free
- Window placement and Detailing
- ❀ <.6ACH @ 50Pa</p>
- HRV/ERV well designed
- No Open Combustion in Home
- Stable SurfaceTemperatures
- ACAT membership