
Solar Thermal

Harvey Bowers

Resources

- Steve Eayrs, Eayrs Plumbing and Heating, Homer, 907-235-2333
- E-mail: steve@eayrsplumbingandheating.com
- Alaska Center for Appropriate Technology (ACAT) <u>www.acat.org</u>
- Research Information Center (AHFC) <u>bhall@ahfc.state.ak.us</u> <u>www.ahfc.com</u> full library
- Alaska Solar Tour Kenai May 14 <u>www.AlaskaSolarTour.org</u>
 Solar Design Manual for Alaska Rich Seifert, CES <u>www.alaskasun.org</u> free download
- Cold Climate Housing Research Center CCHRC www.cchrc.org
- Canadian Mortgage Housing Corp CMHC Case Study #60, Equilibrium www.cmhc.ca
- American Solar Energy Association <u>www.Solartoday.org</u>
- Home Power <u>www.homepower.com</u>
- Solar Solutions by Bristol Stickney <u>www.Plumbingengineer.com</u>
- Equipment sales:
- 1. Alaska Goldstar Plumbing 376-2875
- Ferguson, Viessmann solar systems, Brian Commercial Sales 800-478-7759
- AIS, Anchorage 563-4125 high temperature insulation <u>www.alaskainsulation.com</u>
- Radiant Solar Pennsylvania, 800-466-7556 <u>www.RadiantHeatPorducts.com</u>
- Oventrop- Proctor Sales, Anchorage 907-562-2608 <u>www.oventrop-na.net</u>
- Heliodyne Solar Hot Water <u>www.heliodyne.com</u>

Renewable Energy Tax Credits

- Solar systems; Small Wind; Geothermal Heat Pumps
 - 30% of cost, no upper limit
 - For existing homes & new construction (no rentals)
 - Expires December 31, 2016
- Windows, doors, water heaters, insulation, HVAC, roofs, biomass
 - 30% of cost up to \$1,500
 - For existing principal residence (no new construction or rentals)
 - Expires December 31, 2016
- Commercial Solar Projects
 - 30% of cost, no upper limit
 - Treasury grants up to 30% of cost also available
 - Expires December 31, 2016

Solar Hot Water Collectors are certified by the SRCC: Solar Rating & Certification Corporation

SOLAR COLLECTOR CERTIFICATION AND RATING

CERTIFIED SOLAR COLLECTOR

SUPPLIER: Beijing Sunda Solar Energy Technology

Co Ltd

No. 3 Hua Yuan Road Beijing, 100083 China

MODEL: SEIDO 5-16 AS/AB

COLLECTOR TYPE: SUNDA Tubular

CERTIFICATION#: 2006026B

COLLECTOR THERMAL PERFORMANCE RATING Megajoules Per Panel Per Day Thousands of BTU Per Panel Per Day CLEAR MILDLY CLOUDY CATEGORY CLEAR MILDLY CATEGORY CLOUDY (Ti-Ta) DAY CLOUDY DAY (Ti-Ta) DAY CLOUDY DAY A (-5 °C) 45.0 34.0 23.0 (-9 °F) 42.6 32.2 21.8 B (5 °C) 42.4 31.4 20.5 (9 °F) 40.2 29.8 19.4 (20 °C) 38.3 27.4 36.3 26.0 15.7 16.5 (36 °F) D (50 °C) 30.6 19.6 9.5 (90 °F) 29.0 18.6 9.0 22.8 12.0 2.8 (80 °C) 12.6 3.0 (144 °F) 21.6

A- Pool Heating (Warm Climate) B- Pool Heating (Cool Climate) C- Water Heating (Warm Climate) D- Water Heating (Cool Climate) E- Air Conditioning

Original Certification Date: 11-OCT-06

COLLECTOR SPECIFICATIONS

 Gross Area:
 4.097 m²
 44.09 ft²
 Net Aperature Area:
 1.38 m²
 14.86 ft²

 Dry Weight:
 105.0 kg
 232.1b
 Fluid Capacity:
 1 liter
 0.3 gal

Test Pressure: 1000. KPa 145. psig

COLLECTOR MATERIALS

Frame: Stainless Steel
Cover (Outer): Glass Vacuum Tube
Cover (Inner): None

Pressure Drop

FI	ow	ΔΡ				
ml/s	gpm	Pa	in H ₂ O			

 Absorber Material:
 Tube - Copper / Plate - Aluminum
 Insulation Side:
 Vacuum

 Absorber Coating:
 Sputtered aluminium nitride
 Insulation Back:
 Vacuum

TECHNICAL INFORMATION

Efficiency Equation [NOTE: Based on gross area and (P)=Ti-Ta] Y INTERCEPT SLOPE

\$1 UNITS: \$\eta=0.489 \quad \quad

 K&tauα = 1
 0.947 (S)
 -1.076 (S)²
 Test Fluid:
 SEIDO 5-8 AS/AB

 K&tauα = 1
 -0.18 (S)
 Linear Fit
 Test Flow Rate:
 10.0 ml/s.m² 0.0147 gpm/ft²

REMARKS: Tested with long axis of tubes oriented north-south. IAM perpendicular to the tubes is listed above. IAM parallel to the tubes = 1.0 - 0.32(S)

SOLAR HOT WATER ... IN ALASKA

-3 TO 4 TIMES MORE EFFICIENT IN CAPTURING SOLAR ENERGY THAN PV PANELS (30-70% vs 10-20%)

-- A GREAT MATCH FOR AK SUMMERS BUT A CHALLENGE IN LOW WINTER SUN & COLD

- MUST BE SOUTH FACING AND NO SHADE, STEEP TILT, SOUTH WALL OR OVERHEAD ROOF TO KEEP OFF SNOW IN WINTER

- CLOSED LOOP SYSTEM - USE GLYCOL ANTI-FREEZE SYSTEM

Sun Path

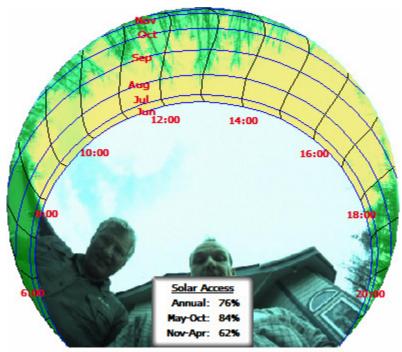
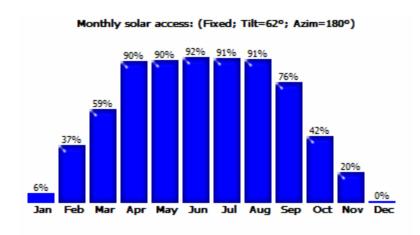
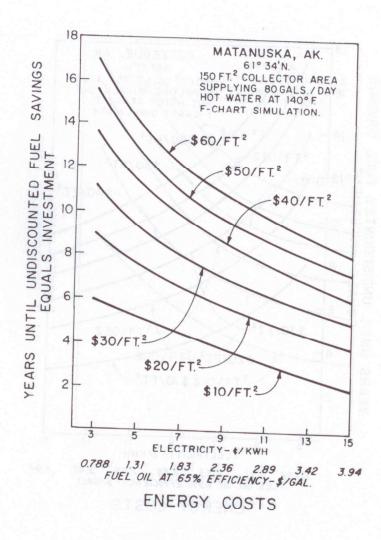




Figure 36. Sun path diagram for Anchorage/Palmer/Wasilla, Alaska. Latitude: 61 N; Longitude: 150 W.

Data by Solmetric SunEye™ -- www.solmetric.com

Data by Solmetric SunEye™ -- www.solmetric.com

Tilt and Angle Effect


Fairbanks, Alaska 64 ⁰ 49'N						Matanuska, Alaska 61 ^o 34'N					
Water Heating Only ²			Space and Water Heating ³			Water Heating Only ²			Space and Water Heating ³		
Azimuth (degrees)	Tilt (degrees)	Annual Solar Contribution	Azimuth (degrees)	Tilt (degrees)	Annual Solar Contribution %	Azimuth (degrees)	Tilt (degrees)	Annual Solar Contribution %	Azimuth (degrees)	Tilt (degrees)	Annual Solar Contribution
0	64	54	0	64	27	0	61	63	0	61	41
0	54	55	0	74	26	0	51	63	0	71	40
0	44	54	0	84	24	0	41	62	0	81	38
0	34	53	0	89	23	0	31	59	0	89	36
0	24	51	0	54	27	0	21	56	0	51	41
0	0	44	0	44	27	0	0	47	0	41	39
10	64	54	10	64	26	10	61	63	10	61	40
20	64	54	20	64	26	20	61	62	20	61	40
30	64	53	30	64	26	30	61	61	30	61	39
40	64	52	40	64	25	40	61	60	40	61	38
50	64	51	50	64	25	50	61	58	50	61	36
40	44	53	40	44	25	40	41	59	40	41	37

¹F-chart computer simulations were used to develop this table. Collectors were not at tilts greater than latitude for water heating because smaller angles are more efficient on an annual basis. However, nearly vertical tilts are optimum for space heating since they maximize winter capture of solar energy.

^{2&}lt;sub>150</sub> ft² collector area.

³⁴⁰⁰ ft² collector area.

Energy Costs

Figure 27. Payback period for solar domestic water heating system in Matanuska, Alaska.

McMaster-Carr Page 1 of 1

Need help finding a product? E-mail or call (404) 629-6500.

Ultra-Flexible Foam Rubber Pipe Insulation

The most flexible pipe insulation we offer, the soft rubber flexes for easy installation over curved or irregular surfaces. Use on chilled water and refrigeration lines and with hot water plumbing.

Flexible Tear-Resistant Silicone Foam Pipe Insulation

Resistant to tearing, silicone stretches over pipe and tubing even when the temperature rises. Use on heating and cooling pipes and electrical components.

Flexible Quick-Install Fiberglass Pipe Insulation

Hook-and-loop fasteners make it easy to install, remove, and reuse this insulation time and again. Use on steam and hot water pipes and fittings.

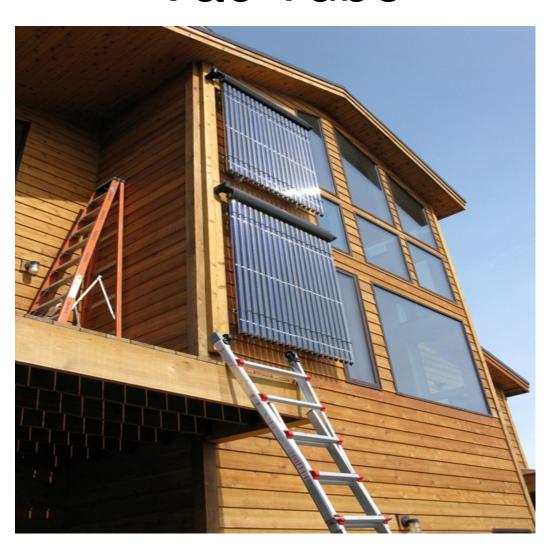
Semi-Flexible Polyethylene Foam Rubber Pipe Insulation

An economical choice for insulating pipe, this foam rubber has a water-resistant closed-cell construction. Use for hot and cold plumbing applications.

Rigid High-Temperature Fiberglass Pipe Insulation

Our most popular choice for rigid pipe insulation, fiberglass resists high temperatures as well as corrosion. Use in steam applications as well as hot and cold piping systems.

ADA-Compliant Under-the-Sink Lavatory Pipe Insulation



The SunRise Home

Vac Tube

Mat-Su Data kWh/m²/Day

Sunda Seido 5-16 AS Absorber surface 3.6m² (38.75 sf) Max temp 190 C; Operating 247 C

Month	Global Radiation	Mean Outside Temperatu				
	[kWh/m²/Day]	•	[°F]	-		
Jan	0.3840	13.2800				
Feb	1.0800	18.1400				
Mar	2.8080	23.3600				
Apr	4.1520	35.7800				
Мау	5.0640	45.8600				
Jun	5.3760	54.1400				
Jul	4.7520	57.3800				
Aug	3.6480	55.5800				
Sep	2.3040	47.6600				
Oct	1.1520	35.4200				
Nov	0.4320	21.9200				
Dec	0.1680	0.1680				
Year	31,3200		35.1650			

Cottage Building Information

- 1,600 sf heated
- 1980 built as an all electric cabin
- 1999 Natural gas water heater, fireplace & unit heater installed
- 2008 installed solar system
- Solar vacuum tubes aimed South at 80 degree tilt
- Sunda 5-16 is 38.75 sf (3.6 m²) (recommended 4 tubes/person)
- Rated by Solar Collecting Certification & Rating SRCC OG-100
- Cloudy day solar production 10,000 to 20,000 BTU/day
- Clear day solar production 20,000 to 40,000 BTU/day

Sizing Example:

Annual % hot water for average home in Mat-Su (lat. 61 degrees 34 minutes) 150 sf collector = delivers approximately 62.6% of hot water needs

Domestic Hot Water (DHW) assumes 20 gallons first 2 people; 15 gallons each additional 1 Btu raises 1 lb of water 1 degree F

- Determine temperature rise (delta T)
 Delta T = 120 40 = 80 deg F Temperature Rise
- Determine energy requirements (water tank volume in gallons) 80 gallon = 667.2 lb (1 gal = 8.34 lb of water = 0.1337 cu ft) 667 lb * 80 deg F = 53,360 Btu/day
- Determine solar collector output / tube
 1,000 * 0.70 conversion = 700 Btu/sf/day of collector absorber
 700 Btu/sf/day * 2.42 sf area/tube = 1694 Btu/tube/day
- Determine tube requirements
 53,360 Btu/ 1694 Btu/tube/day = 32 tubes or 2 collectors

Building Codes:

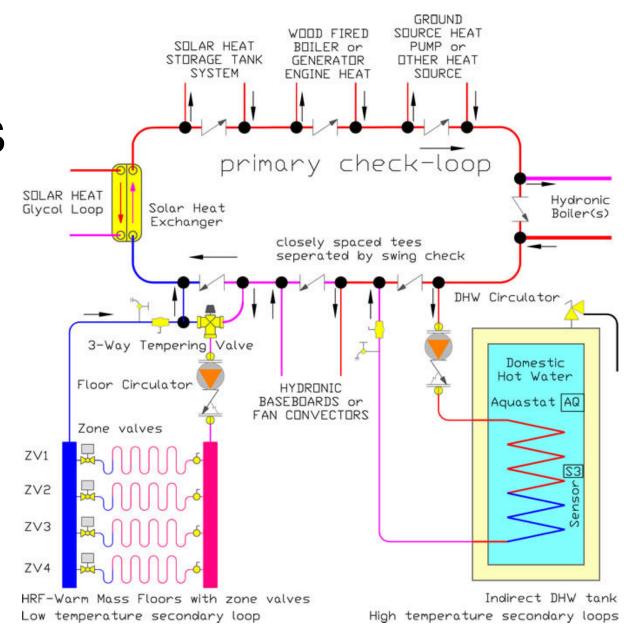
ASHRAE – 90003 Active Solar Heating Design Manual

ASHRAE – 90342 Active Solar Heating Systems Installation Manual

ASHRAE – 90336 Active Solar Heating Systems Operation & Maintenance Manual

NFPA 70 – National Electrical Code

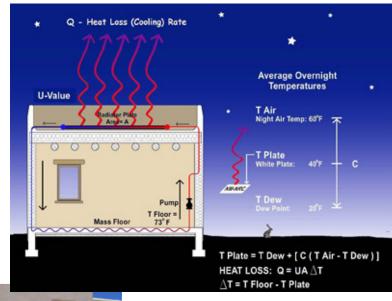
Solar System Costs


				•	Air vent	\$ 20
•	Sunda Seido 5-16	\$1	,790	•	Drain – ball valves 3/4 N	ИРT
•	Roof mount kit\$ 218					\$ 32
•	Pump – Laing**	\$	150	•	Pressure gauge	\$ 15
•	Shipping		300	•	Labor – 2 days hired	\$ <u>400</u>
•	Heat Exchange tank*	\$	0		Total cost	\$3,246
•	Controller – Resol				rotal ooot	φ <u>σ,ε το</u>
	BS/1 3 sensor	\$	146			
•	Amtrol model 15					
	expansion tank	\$	35	*	Normal range \$900 to \$1	.400
•	Pipe insulation			\$ **		
	55				Laing circulation pump Si	
•	Check valves – 2	\$	30		magnetic pump, 33 watts 115 votes .3 amps, can h	• •
•	Pressure relief valve	\$	15		pipe loop of 350 feet ½"	a a
•	Ball valves $-4 \frac{3}{4}$ inch	\$	40			

Cottage Occupancy & Utility Use

	tage e		110 / 01	O till ty	<u> </u>
Year	% Occupied	Electric Use	Electric Cost	Natural Gas Use	Natural Gas Cost
2005	16% Summer only	1247 kwh	\$218 .175/kwh	1043 ccf	\$658 .63/ccf
2006	17% Summer only	1404 kwh	\$245 .175/kwh	1043 ccf	\$748 .72/ccf
2007	13% Summer only	1328 kwh	\$232 .175/kwh	971 ccf	\$748 .77/ccf
2008	17% Summer only	1503 kwh	\$268 .178/kwh	1097 ccf	\$987 .90/ccf
2009	79% Year round	2952 kwh	\$530 .18/kwh	1035 ccf	\$1134 1.10/ccf

Note: Solar thermal installed mid-2008. Before Solar thermal, if occupied 79% Gas cost would have been closer to \$2,000


Solar Solutions

Plumbing Engineer A TVB Publication

