Net Zero Ready

New Construction Case Study

Flow of the Show

- NZR Basic Concepts
- My Motivations
- NZR Boundary
- Modeling
- Orientation
- Basic Structure
- Arctic Wall
- Window Extensions
- Insulation
- Window Details
- Costs so Far
- Next Steps

- Trusses
- Fabric
- Rain Screen

NZE Basic Concepts

- Efficiency is Job One "radical" energy conservation and efficiency measures required to reduce demand, such that energy supplied can come from clean sources
- Reduce carbon pollution
- Improve individual, local and regional energy security
- Use stably-priced clean fuel get away from volatile fossil fuel prices that trend up

MY MOTIVATIONS

The "Hockey Stick"

Climate Change Impacts in Alaska

MY MOTIVATIONS

Chlupp house - Fairbanks

Efficiency First, Solar Water Heating and Seasonal Storage

Solar thermal Flat-plate Collectors 5000-gallon thermal storage

MY MOTIVATIONS

CONSERVATION AND EFFICIENCY FIRST Dillingham Home – "Net Zero Ready"

Outside dimensions: 24'x24' Stories: 1.5

Wall thickness: 28" (with dense-packed cellulose)

Walls R-90; Ceiling R-140; Floor R-35 (+R20 on perimeter)

Airtightness: <0.05 ACH @ 50 pascals

World's tightest home!

NZR Envelope – 2nd Floor only

Modeling Energy Demand

- Energy modeling to help in design
- R-60 walls and floor (16" cellulose)
- R-90 ceiling (24 " cellulose)
- Minimize penetrations and thermal bridging
- Triple-pane fiberglass windows
- Best local doors
- "Arctic Wall" construction

Energy Modeling

- Specified parameters and goals (e.g. envelope insulation; window/door size, location and quality, etc.)
- Used AKWarm program
- Design Heat Load approx. 4,600 Btu/hour

MODELING

Design Energy Modeling - AKWarm

Annual Energy Flows

- Gross loss: 14.9 MMBtu
- Gross Internal: 14.5 MMBtu
- Useable Internal: 10.9 MMBtu (75%)
- Gross Solar: 4.1 MMBtu
- Useable Solar: 1.9 MMBtu (46%)
- Net Heat Load: 2.1 MMBtu
- This is about 3.5 kBtus/SF/yr (Passive House is 4.75)

MAXIMIZING THE SOLAR RESOURCE

Orientation

End "phase 1" – basic 2x4 structure

Extra tall for a couple reasons....

2nd Floor trusses – 16" deep

24" Energy Heel Roof Trusses

Air Diffusion "Arctic Wall" - Concepts

- No separate vapor barrier layer
- Interior layer has higher permeability rating than exterior layer – allows drying to outside
 - Interior layer (OSB) perm rating about 2
 - Exterior fabric (Mento) perm rating about 38
- "Rain screen" gap beneath siding, facilitates drying

Air Sealing – Seam Tapes

On 2x4 Structural Wall

Air Sealing – Seam Tapes

On 2x4 Structural Wall

Larsen Vertical Truss

We chose 4-foot gusset spacing

Mento fabric pinned to 2x4 edge with rain screen 1x

Larsen truss jig

Gussets at 4-foot spacing – glued and nailed

Larsen Truss – connection at rafter

Larsen Truss – bottom corner

Larsen Truss - Corner "Box"

Thermal Bridging – Window Bays

In case of cellulose settling

Installing Exterior Fabric

Fabric and Rain Screen 1x4s

Rain Screen and Attic Vent at top

Window Extensions

Window Extension

NOTE: More seam tape

Big Blower Truck for Cellulose Insulation HUGE Thanks to Thermo-Kool!

Dense-Packing Cellulose

Walls (both stories) took about 9400 lbs cellulose

Dense-packed to 3.5 lbs/CF - "firm mattress" feel

INSULATION

Sophisticated Dense-packing Tools

INSULATION

Attic Insulation Baffles and final dense-pack access

Windows

- Fiberglass, triple-pane, Low-E Argon
- From Great Land Windows in Fairbanks

	SHGC	Stated U-Value/R-value	Visible Trans
SOUTH	56%	0.13 / 7.7	70%
NORTH	22%	0.11/9	56%

Window Insulation

Trying to minimize thermal bridging

Plywood over

Window Exterior Finish

Sloped metal sill Over Rigid Insulation

WINDOW DETAIL

More Air Sealing – Seam Tapes on Exterior side of Windows

Costs so Far

 Remember – only 600 square feet, so accepting some economic "penalty"

Some materials scrounged, etc

Costs so Far

- Costs estimated to simulate 1-story structure
- Basic structural shell labor and materials
 - Excavation
 - > Foundation
 - > 2x4 walls
 - ➤ Roof trusses with 24" energy heel
 - Metal roofing
- \$63/square foot**
- ** foundation insulation virtually free

Costs so Far

- Arctic Wall estimated labor and materials
 - > Lumber and fasteners, etc.
 - > Insulation
 - ➤ Mento fabric and sealing tapes
 - Windows/doors and insulation around them
 - Metal roofing
- \$39/square foot**

Next Steps

- Ceiling plywood
- Insulate ceiling (24" blown) and floor (16" dense-pack)
- Space Heating air-source heat pump
- Domestic Hot Water solar thermal and ASHP?
- Plumbing, electric, interior finish

Solar PV and Thermal

DHW is challenge in NZE

