Zero Energy in Alaska?

ZeroEnergy in Alaska?

Thorsten Chlupp

CCHRC

COLD CLIMATE HOUSING RESEARCH CENTER

thorsten@cchrc.org

How many SSS can we burn

Turn up the heat...

"evolution"

We know we are in trouble!

The trouble is that we are still arguing about it!

We know we are in trouble – have a fix:

We know we are in trouble – have a fix:

Building in the Arctic is difficult and expensive.

1. Extreme Climate

2. Remote Location- High transportation costs

3. Short Building Season

4. Two month of zero passive energy gain

NetZero Home

1. NO Heating System

2. No Utility Costs

3. PLUS – Comfort!

4. In Alaska???

NetZero Home

1. NO Heating System

2. No Utility Costs

3. PLUS – Comfort!

4. In Alaska???

Impossible!

No? Seriously...

...there is nothing new.

NetZero Home

Zero net energy consumption and zero carbon emissions <u>annually</u>

NetZero Home

Reducing the loads

Passiv Haus

NetZero Home

Maximizing efficiency of the Building and it's systems is the KEY.

Passiv Haus – The Key Principles

Heating demand @ 4.75 kBTU/(ft²yr)

Energy demand @ 11.1 KWh/(ft²yr)

Transmission Losses	Heat Gains Solar Radiation
kBTU/yr	kBTU/yr
0	0
2470	921
8301	17645
4221	2878
0	0
14992	21443

.

We confirm that the values given herein have been	Issued on:
determined following the PHPP methodology and based	
on the characteristic values of the building. The calculations	signed:
with PHPP are attached to this application.	

Building	Chlupp Residence	Annual Heat Demand	4.29	KETUI(ff'yr)
----------	------------------	--------------------	------	--------------

Climate:	Fairbanks	, Alaska											
Window Area Orientation	Global Radiation (Cardinal Pointh)	Shading	Dirt	Non-Perpendicular Incident Radiation	Glazing Fraction	SHGC	Reduction Factor for Solar Radiation	Window Area	Window U-Value	Window R-Value	Glazing Area	Glazing Area as % of Gross Floor Area	Average Global Radiation
maximum:	18TU/Pyr	0.75	0.95	0.85		-		nt*	STUTUR. R	nr.m ² .F/8TU	ft ²		kSTUTt'yr
North	17	0.75	0.95	0.85	0.000	0.00	0.00	0.0	0.00	0.0	0.0	0.0%	17
East	70	0.74	0.95	0.85	0.728	0.63	0.43	48.3	0.18	5.7	35.2	2.7%	70
South	174	0.97	0.95	0.85	0.850	0.63	0.66	242.1	0.12	8.4	205.8	15.9%	174
West	87	0.76	0.95	0.85	0.808	0.63	0.50	105.9	0.14	7.3	85.6	6.6%	87
Horizontal	93	0.75	0.95	0.05	0.000	0.00	0.00	0.0	0.00	0.0	0.0	0.0%	93
64. VA	10	Total or Averag	e Value for A	d Windows.		0.63	0.59	396.3	0.13	7.6	326.6	1	1. A A

U-Yelvic

0.0987

(1¹/LANDED

FIRST FLOOR PLAN

WINDOW SCHEDULE										
NUMBER	LABEL	QTY	FLOOR	SIZE	WIDTH	HEIGHT	R/O	EGRESS	DESCRIPTION	COMMENTS
W01	6050DC	1	2	6050DC	72 *	60 "	73"X61"		DBL CASEMENT-RHL - BIRCH (HONEY)	
W02	2046FX	1	1	2046FX	24 *	54 *	26 1/2"X56 1/2		FIXED GLASS	
W03	3018FX	1	1	3018FX	36 *	20 "	37"X21"		FIXED GLASS - BIRCH (HONEY)	
W04	5046DC	1	2	5046DC	60 *	54 "	61"X55"		DBL CASEMENT-LHL	
W05	4020HO	1	2	4020HO	48 "	24 "	49"X25"		HOPPER - BIRCH (HONEY)	
W06	4040DC	1	1	4040DC	48 "	48 "	50 1/2"X50 1/2		DBL CASEMENT-LHL - BIRCH (HONEY)	
W07	5050FX	1	1	5050FX	60 *	60 "	62 1/2"X62 1/2	-	FIXED GLASS - BIRCH (HONEY)	
W08	5050SC	1	2	5050SC	60 *	60 "	61"X61"	YES	SNGL CASEMENT-HR - BIRCH (HONEY)	
W09	6050FX	1	2	6050FX	72 *	60 "	73"X61"		FIXED GLASS - BIRCH (HONEY)	
W10	6050DC	1	2	6050DC	72 *	60 "	74 1/2"X62 1/2	YES	DBL CASEMENT-LHL - BIRCH (HONEY)	
W11	6050FX	1	1	6050FX	72 *	60 "	74 1/2"X62 1/2		FIXED GLASS - BIRCH (HONEY)	
W12	3040FX	1	2	3040FX	36 *	48 "	37"X49"		FIXED GLASS	
W13	2020HO	1	1	2020HO	24 *	24 "	26 1/2"X26 1/2	-	HOPPER - BIRCH (HONEY)	
W14	6075FX	1	1	6075FX	72 *	89 *	72"X90"		FIXED GLASS - BIRCH (HONEY)	
W15	6018HO	1	1	6018HO	72 *	20 "	72"X20 1/2"		HOPPER - BIRCH (HONEY)	
W16	5075EX	2	1	5075EX	60 *	89 *	60"X90"		FIXED GLASS - BIRCH (HONEY)	

1004CH - The Chlupp Residence 2595 Allen Adale

Phone 607 - 459 - 5567 REIDR

Exterior Doors to be Thermatru Fiberglass with R-12 Value Garage R-20

All Windows

to be fiberglass

framed with an R-value of 7.68

Unless otherwise

noted, all

The ARTIC Wall

0 0

1084 Bags of cellulose – Or over 12 tons of insulation

Ty /ek

avyeme

Antipation 12

10

r BK

111

15 III III

Ve

yve (

Han Vin

Hall VI

Tyv :k

yve

T IVE

Ty ek

ek

Ty

Welcome to the

2nd Solar Age

is sending us 108,000,000,000,000,000,000 kWh -more then 10,000 times the energy we need

Why Solar Age?

Annual Seasonal Heat Storage.

The **3,170,064 gal** hot water storage tank in Friedrichshafen, Germany supplies up to 570 living units of the newly built area since 1996.

Solar PV

Solar PV

Flat Plate Collector

Evacuated Tube Collector

Micro Hybrid Energy System for the Arctic

480 SF Thermal Collectors

Masonry Heater

5,000 Gal Seasonal Storage

Drake Landing Solar Community

Interesting Numbers...

TOTAL PRIMARY ENERGY SUPPLY

World

Evolution from 1971 to 2008 of world total primary energy supply by fuel (Mtoe)

A good Team & Design is Essential.

Designer

Supplier

Inspector

Trades

Builder

New tools of the Trade

Air tightness is the cheapest and easiest measure to ensure the longevity of the core structure and conserve energy

0.6 ACH_50 made simple:

1. Design for a continuous air layer

2. Design fool proof air seal for windows and doors

3. Minimize any penetrations

4. Pre-test, Re-test and own the right tools for the job... Windows and Doors are the weakest links in the building Assembly!

No windows due to North.

We can overcome U-values with Thermal shutters, but we depend on high SHGC

South facing glassing @ min. 60% SHGC

Passive Solar Gain is the only FREE energy!
Passiv Haus Windows for the Arctic

WE need – U-value of 0.072 with SHGC over 0.60

Over insulated windows Frames = huge increase in installed – U-value

Position of Windows in the wall

Source: Protokollbund Nr. 37, Passive House Institute, Darmstadt, Nov. 2008

Pre-warming of Air supply

Day lighting

We want light - not heat...

Cloth drying

NO! Conventional Dryer, vented outside.

Induction Cooktop

We need to re-learn the basics...

Efficiency in design Let's keep the heat! Size matters What do we really need? KISS - Keep it simple, stupid The Sum of all its parts...

Artic Entries make sense...

True costs of Superinsulation: Costs to Build

> vs Operating Costs

> > vs Lifespan

True costs of Superinsulation:

U. S. First Purchaser's Crude Oil Price

True costs of Superinsulation:

True costs of Superinsulation: **Building super** insulated makes economical sense from day ONE!

ð

Living Buildings

Living Buildings

She only way of the

tuture...

Focus on the Challenge.

Nothing is Impossible.

Our health is priceless.

We have only one planet.

Please build responsible!

QUESTIONS?

Thorsten Chlupp

COLD CLIMATE HOUSING RESEARCH CENTER